Parabolic Cylinder Analysis

Dave McGinnis
Fermilab
October 3, 2008

Design Parameters

- Number of cylinders = 8
- Cylinder length = 130 m
- Cylinder width = 12.5 m
- Cylinder Transverse beam width < 8 x 15 arcmin

Telescope Layout

Cylinder Cross-Section

Simple Telescope Feed (first attempt)

Alternating Telescope Feed

Offset-Fed Telescope

- Concern about double bounce modulation between dish and feed will cause significant ripple in the antenna pattern.
- Would like feed to be hidden by dish to shield from RFI sources.
- Small f-ratio exaggerates focus errors
 - Beam must be parallel to primary axis
 - Cut >50% of dish away

Offset-Fed Telescope

Cylinder Simulations

- Physical Optics Approximation
- The antenna dish reflects a scattered field so that the total tangential electric field on the dish is zero. $\vec{E}_{Total} = \vec{E}_{inc} + \vec{E}_{scat}$
- On the surface of the dish: $\hat{n} \times \vec{E}_{inc} = -\hat{n} \times \vec{E}_{scat}$
- If the incident field on the dish surface is known, then the scattered field on the dish surface is also known

Physical Optics Approximation

Telescope Coordinate System

$$D(\varphi,\theta) = \frac{U(\varphi,\theta)}{\frac{1}{4\pi} \iint U(\varphi,\theta) \sin(\theta) d\theta d\varphi}$$

$$U(\phi, \theta) = \frac{1}{2} \operatorname{Re} \{ \vec{E} \times \vec{H}^* \} \cdot \hat{\mathbf{r}} R^2$$

Polarization

Celestial coordinate system (in red) with respect to telescope coordinate system. The angle a equal to the latitude of the telescope location

Celestial Coordinate system defined by declination angle, $\theta_{\rm d}$, and right ascension angle, $\phi_{\rm p}$.

$$\begin{split} & - \big(\sin(\alpha) \sin(\theta_d) \cos(\varphi_r) + \cos(\alpha) \cos(\theta_d) \big) \hat{x} \\ \widehat{\theta_d} = & + \big(\sin(\theta_d) \sin(\varphi_r) \big) \hat{y} \\ & + \big(-\cos(\alpha) \sin(\theta_d) \cos(\varphi_r) + \sin(\alpha) \cos(\theta_d) \big) \hat{z} \end{split}$$

$$\begin{aligned} \widehat{\varphi_r} &= -\big(\sin(\alpha)\sin(\varphi_r)\big)\widehat{x} \\ \widehat{\varphi_r} &= +\big(\cos(\varphi_r)\big)\widehat{y} \\ -\big(\cos(\alpha)\sin(\varphi_r)\big)\widehat{z} \end{aligned}$$

Directivity

$$D(\varphi,\theta) = \frac{U(\varphi,\theta)}{\frac{1}{4\pi} \iint U(\varphi,\theta) sin(\theta) d\theta d\varphi}$$

$$\Omega_A = \frac{4\pi}{D_{max}}$$

$$A_{em} = \frac{\lambda^2}{\Omega_A}$$

$$L_{em} = \frac{A_{em}}{W}$$

Y-Z Polarization Results

Y-Z Polarization Results

- Ra Env Theta Scan

--- Ra Theta Scan

X-Polarization Results

X-Polarization Results

Future Work

- Explore other feed designs
 - Square patch antenna
 - Folded dipole
- Moment Method simulation of feed to understand coupling
- Explore larger f-ratio

Y Polarization (Full Width)

Y Polarization (Full Width)

$$\frac{L_{em}}{\lambda} = 0.376 \, \bullet$$

Ray Array Theta Scan

Dec Env Theta Scan

Ra Env Theta Scan

--- Ra Theta Scan

X Polarization (Full Width)

X Polarization (Full Width)

Telescope Layout

Telescope Layout

